lit up into two adjacent levels, such that than the 2s orbit.

curves for the 2s- and 2p-levels. Dotted lines d the asymptotes of the approximation of § 2. lso an asymptote for both curves.

unctions. When certain values of the azi $l = 0, 1, 2, \ldots$ and of the energy Eormula (2); n can eventually be imaginary

TABLE II

E	70	from
omic units	atomic units	section
-0.500	000	3a
-0.4960	5.020	36
-0.4834	4.068	36
-0.4417	3.192	36
-0 3965	2.807	36
-0.3273	2.472	36
-0.2323	2.200	36
-0.2222	2.178	36
-0.1250	2.000	3a
-0.0800	1.934	36
-0.0566	1.902	3a 3c
0	1.835	
0.0566	1.778	3d
0.125	1.711	3d
0.500	1.448	3d
1.928	1.155	31
2.193	1.085	3f
2.518	1.01	3/
3.427	0.91	3 <i>f</i>
4.935	0.81	3f
-00	0	3e

and non-integer) are chosen, the wave function (4), (6) is known as function of r or ρ .

Each time when a zero point of this wave function is found this node can be considered as the radius r_0 of the cage in which the hydrogen atom is compressed. This gives sets of corresponding values of E and r_0 . For l=0 and no nodes between r=0 and $r=r_0$ a point of the 1s-level energy curve is found.

When for l=0 there lies one node between the limiting points of the coordinate r, this is a wave function of a 2s-state. For l=1 and when no zero point occurs, one finds points of the 2p-curve, etcetera. The various regions of energy will now be considered and methods described of finding nodes.

a) E < 0. When n is an integer, the wave function degenerates into a derivative of a Laguerre polynomial, with a number of

TABLE III

The 2s-level $(N = E)$		70	from
11	atomic units	atomic units	section
2		∞	3a
2.072	-0.1165	10.36	36
2.213	-0.1021	8.852	3 <i>b</i>
2.5	-0.0800	7.815	36
2.559	-0.0764	7.677	36
2.885	-0.0601	7.212	36
3	-0.0566	7.096	3a
3.412	-0.0429	6.824	36
3.5	-0.0408	6.785	36
4	-0.0312	6.611	3a
5	-0.0200	6.429	3a
00	0	6.153	3c
4 i	0.0312	5.808	3d
3 i	0.0556	5.589	3 <i>d</i>
2:	0.1250	5.111	3d
i	0.5000	3.823	3d
0.902 i	0.6143	3.609	3d
0.637 i	1.234	2.915	31
0.557 i	1.611	2.67	3/
0.477 i	2.193	2.39	3/
0.446 i	2.518	2.265	3/
0.414 i	2.920	2.15	3/
0.382 i	3.427	2.03	3/
0.350 i	4.078	1.92	31
0.318 i	4.935	1.76	31
0.510 i	000	0	3e